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Spatial Structure in Diffusion-Limited 
Two-Particle Reactions 

Maury Bramson t and Joel L. Lebowitz 2 

We analyze the limiting behavior of the densities pA(t) and pu(t), and the ran- 
dom spatial structure ~(t) = (s ~B(t)), for the diffusion-controlled chemical 
reaction A + B ~ i n e r t .  For equal initial densities pA(0)=p~(0) there is a 
change in behavior from d~<4, where pA(t )=ps( t )~C/ t  a/4, to d~>4, where 
pA(t)=pB(t)~C/t  as t ~  *o; the term C depends on the initial densities and 
changes with d. There is a corresponding change in the spatial structure. In 
d < 4, the particle types separate with only one type present locally, and 4, after 
suitable rescaling, tends to a random Gaussian process. In d >  4, both particle 
types are, after large times, present locally in concentrations not depending on 
type or location. In d = 4 ,  both particle types are present locally, but with 
random concentrations, and the process tends to a limit. 

KEY WORDS: Diffusion-limited reaction; annihilating random walks; 
asymptotic densities; spatial structure; exact results. 

1. I N T R O D U C T I O N  

Consider a system of particles of two types on Zd, A and B, which execute 
simple random walks in continuous time. That is, the motion of different 
particles is independent and a particle at site x will jump to a given one of 
its 2d nearest neighbors at rate 1/2d. Particles are assumed not to interact 
with their own type--multiple A particles or multiple B particles can 
occupy a given site. However, when a particle meets a particle of the 
opposite type, both disappear. (When a particle simultaneously meets more 
than one particle of the opposite type, it will cause only one of these 
particles to disappear.) 

To study the time evolution of this system, one needs to specify an 
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initial measure for the process. We consider here the case in which one 
independently throws down A and B particles according to the 
homogeneous Poisson random measures with densities r A and rB; if there 
are initially both A and B particles at x, they immediately cancel each 
other out as much as possible. We denote by ~(t)=(~A(t),  ~B(t)) the 
random state of the system at time t; ~(G; t) denotes the number of 
particles of each type in the set G c Z d. 

This process can serve as a model for the irreversible chemical reaction 
A + B ~ inert, where both particle types A and B are mobile. A and B can 
also represent matter and antimatter. There has been much interest in this 
model over the last several years following papers by Ovchinikov and 
Zeldovich ~1) and Toussaint and Wilczek(2); see Bramson and Lebowitz (3'4) 
and refs. 5-8 for a more complete set of references. The main concern has 
been with the behavior of the densities in spatially homogeneous systems, 
i.e., with the expected number of A and B particles per site, pa(t)  and PB(0, 
as t--, ~ .  (The density of course does not depend on the site x.) The 
two basic cases are when ( a ) 0 < p A ( 0 ) = p B ( 0 )  (equal densities) and 
(b) 0 < p A ( 0 ) < p B ( 0 )  (unequal densities). Note that (a) corresponds to 
0 < r a = rB and (b) to 0 < rA < r~. Since pB(t )  --  pA(t) must clearly remain 
constant for allt,  one has p A ( t ) = p B ( t )  in (a), and l i m t ~  pn( t )=  
p B ( 0 ) -  pA(0)>0  in (b). The rate at which pA(t)--* 0 is analyzed in ref. 3. 
We summarize the results for both equal and unequal densities here, but 
will be primarily interested in the former. In this case, the asymptotic 
density of pA(t ) changes from t -a/4 in d~<4 to t 1 in d>~4. 

In addition to the long-term behavior of the density, there has also 
been interest in the limiting spatial structure of the model (see, e.g., ref. 2). 
Simulations indicate that in d~<3, the particle types separate as time 
increases, so that most regions are dominated by one type. This behavior 
is in accordance with the above asymptotics for pA(t). One does not expect 
this separation in d>~4, again by reference to pA(t). We rigorously analyze 
this asymptotic behavior. We show that after suitable rescaling, ~(t) 
converges to a limiting process. Its local densities are given by a parabolic 
equation with random initial data, and the process itself is locally a 
Poisson random field. The results are qualitatively different in d <  4 and 
d >  4, in conformity with expectations. The behavior in d =  4 is a hybrid of 
the two other cases. We present a summary here, with a detailed treatment 
being given in ref. 4. 

2. A S Y M P T O T I C  D E C A Y  OF D E N S I T I E S  

For p A ( 0 ) = p B ( 0 ) ,  o n e  can reason that p A ( t )  should decrease like 
1/t  a/4 for d~<4 and like l i t  for d>~4. The standard logic is that if one 
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"neglects" the random fluctuations in the number of the two types of par- 
ticles present in a local region, as can be achieved physically by vigorous 
stirring, one can treat the positions of particles for the two types as being 
independent. The rate at which A particles meet B particles is then propor- 
tional to the density of each type present. This gives the "law of mass 
action" or mean-field behavior 

@A(t) 
kpA(t ) pB(t) (1) 

dt 

for appropriate k > 0. Since pA(t)= pB(t), we have for the solution of (1) 

p A ( / )  ~ 1/kt for large t (2) 

Here, by a(t) ,~ b(t) we mean that a(t)/b(t) + 1 as t ~ oo. 
On the other hand, if one examines the effect of local fluctuations of 

the initial state, one notes that the difference of the number of A particles 
and B particles in a cube of length M has variance of order M d in d dimen- 
sions. The difference in the number of A and B particles is hence typically 
of order M d/2. This gives a particle density of at least M d/2. Since it takes 
particles not initially close to the boundary of the order of time M 2 to 
enter or leave the cube, one might expect this difference to continue up 
through times of this order. Plugging in t = M 2, one obtains a lower bound 
of t d/4 for pA(t) and p~(t). 

One needs to reconcile these bounds with (2). The standard heuristics 
are that the effect of local fluctuations dominates in d < 4 ,  whereas the 
mean-field limit in (2) is accurate for d~> 4. The densities pa(t)  and pB(t) 
should therefore decay asymptotically like t J/4 for d~< 4 and t -1 for d>~ 4. 
The following result, an improvement of Theorem 1 in ref. 3, verifies this 
behavior. 

T h e o r e m  1. 
r A --= ru > 0. There exist positive constants Cd > 0 such that 

Assume that the initial measure is Poisson with 

pA( t )=pB( t )~  Cd,~AA/t a/4' d < 4  

C4(x/rA V 1)/t, d= 4 

,~ Ca/t, d > 4 

(3) 

[c~ v/~ (resp. c~/x/~) denotes the larger (resp. smaller) of c~ and/~.] 

For  PA(0) < pB(0), the asymptotic behavior of pA(t) is quite different. 
Since l i m , ~ p B ( t ) = p B ( O ) - - p A ( O ) = r B - - r a = b > O ,  there is always at 
least density b of type B particles in the population. The density pA(t) must 
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therefore decrease much more rapidly than if pA(0)= pB(0). From (1), one 
obtains 

dpA(t) 
k[b + o(1)] pa(t) (4) 

dt 

Consequently, one might expect that 

PA(t) ---- pA(0) e--k[6 + o(1)], (5) 

On the other hand, as in the case pA(0)=pB(0), local fluctuations 
might alter the relative proportions of type A and type B particles locally, 
and cause a different rate of decay. Presumably, as before, this change 
would be associated with lower dimensions. The following result was 
proved in ref. 3. 

T h e o r e m  2. Assume that the initial measure is Poisson with 
0 < rA < rB. There exist positive constants Aa and 2 d so that 

exp[ -Aa(baga(t)] <<. pA(t) ~< exp[ - 2aOaga(t)] (6) 

for large enough t, where 

fx /7 ,  d--1 

gd(t) = ~t/log t, d =  2 (7) 
! 
( t ,  d>~3 

and 

~ (rB - r A ) 2 / r B ,  d= 1 
~(t) 

[ ru-- r a, d>~ 2 
(8) 

The mean-field limit is thus valid in d~> 3, but not in d =  1, 2. The 
dependence on initial densities is different in d--- 1 than that in d > 1, which 
corresponds to (5). (The reason is the presence of greater fluctuations in 
d =  1.) Theorem 2 will also provide some insight in understanding the local 
spatial structure for ra = rB in d <  4. 

3. SPATIAL S T R U C T U R E - - M A C R O S C O P I C  BEHAVIOR 

We wish to analyze the asymptotic behavior of the process r  
(~a(t), ~B(t)) as t ---, oo. As would be expected, we rescale both space and 
time to pass to a limiting process. Individual particles execute random 
walks (until annihilation). Since rescaling time by t and space by x/7 
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produces Brownian motion in the limit for such particles, it makes sense to 
undertake the same rescaling here. We therefore set 

~ '(a;  s) = r G; ts)  (9) 

where G c Nd, x/~ G is the set G multiplied by x / t  in each direction, and 
s, t/> 0. After rescaling by ~,/t, we need to compensate for the increase in 
particle density in this new scale. Applying Theorem 1, we see that on this 
scale one has density of magnitude t - -d /4"td/2=td/4  for d~<4 and 
t ~ . t d / 2 =  t a/2 1 for d~>4 as t--* o0. In either case, there are hopefully 
enough particles present so that the local behavior is determined by 
some law of large numbers, and the evolution of the process is, on this 
macroscopic, or hydrodynamic, scale, asymptotically deterministic. (See 
Lebowitz et  aL (9) for a general reference on hydrodynamic scaling.) 

A limiting process r/ attained in such a manner will depend o n  its 
initial measure and a rule prescribing its evolution. Since ~(0) is defined 
by Poisson random measures which are independent at different sites, 
rescaling ~(0) gives white noise, which we denote by ~. [That  is, ~ is the 
generalized Gaussian random field with covariance structure 

E[~(~o) ~(q,)~ = f~d q,(x) ~(x) dx (10) 

where q), ~ are test functions. Alternatively, one can substitute indicator 
functions for q) and ~, or write E[~b(x) qS(y)] = 6 ( x - y ) .  In d =  1, ~b is just 
the "derivative" of Brownian motion.] One might hope that the evolution 
of r/ is connected with normal distributions. Here N s denotes a normal 
distribution in d dimensions with mean 0 and variance s. 

We now state Theorem 3, which gives the behavior of q in d < 4 .  Here 
the asterisk denotes convolution and [x]  = - ( x / x  0), [x ]  + = x v 0. 

T h e o r e m  3. For d < 4 ,  

where r/= (r/A , r/B) and 

t_d /4~  t w r~ as t ~  (11) 

r/A(6; s) = [(Ns �9 m)(G)] 
(12) 

r/B(G; s)  = [ ( N s  * q ~ ) ( 6 ) ]  + 

In (11), ~-~ denotes weak convergence with a slight abuse of notation, 
since the convergence is not uniform in s close to 0. 

Theorem 3 states that for large t, t--d/4~ t is approximated by r/, whose 
components are specified by gt s = Ns * ~. This convolution is a smooth 

822/65/5-6-8 
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function of x in Nd, on account of Ns. Equivalently, gt s is the Gaussian 
random field with mean 0 and covariance 

1 
EE~Us(x) .e ly xl2/4~ 

gt (y ) ]  = (4rest d/2 

Note that whereas q~ is random, N, is not. So the evolution of the system 
on this macroscopic scale is specified (in the limit) completely by its initial 
data. As indicated by (12), there is only offe type of particle locally, in 
accordance with the non-mean-field rate of decay t a/4. 

Some motivation for the behavior in (11) (12) is provided by the 
following observation. Set 

w ( 0  = G( t )  I 4(0)] 
(13) 

wt(6; s) = w ( , f i  c; ts) 

That is, W is the mean signed measure of ~ conditioned on knowledge of 
the initial configuration, and W t is the corresponding rescaled measure. 
The analog of (11)-(12) is then 

t d/4Wt w>qB- - r /A=N*q5  

It is easy to see that the density ~/(x, s) of N .  q~ is given by 

0~ 1 
0s 2 A~/, ~/(., 0) = q5 

(14) 

(15) 

So, one might expect that (14) is obtainable in some simpler manner. 
This is in fact the case: replace the system A + B--* inert by the corre- 

sponding system of independent random walks. That is, particles of each 
type move as before, but there is no interaction. If one starts with a 
Poisson random measure and scales space and time as before, then on 
account of the central limit theorem, random walks are replaced by 
Brownian motion as t --* oo and one obtains the density t / in the limit. One 
can verify, on the other hand, that the expectations for the interactive and 
noninteractive systems are the same. (When an A and B pair meet in the 
interactive system, they can be thought of as sticking together and forming 
a combined particle of "neutral" type.) Therefore, (14) must also hold for 
the system A + B--* inert (for all d). The point in Theorem 3 is that the 
system tt in d <  4 in fact evolves deterministically for a prescribed initial 
configuration, with only one type of particle ever present locally. The result 
is proved in ref. 4. 

The asymptotic behavior of ~t for the case d > 4  is simpler. Since, 



Structure in Diffusion-Limited Reactions 947 

according to Theorem 1, mean-field reasoning gives the right result in this 
case, the limiting process t/ should not have any spatial structure. So it 
should also have no dependence on the particular initial configuration, 
since the initial measure is ergodic. It is therefore not surprising that one 
obtains the following result. 

T h e o r e m  4. F o r d > 4 ,  

tl_d/2{, w t/ as t ~  oo (16) 

where t /= (t/A, t/B) is nonrandom and has densities Cd/s, Cd>0.  

Note that, unlike the case d < 4, both types of particles are always present 
locally, in fact in the same concentration. 

The asymptotic behavior of 4' for the case d =  4 is the most difficult 
to work with. This is the critical case: annihilation as given by both local 
fluctuations and mean-field reasoning plays a role. The result of this is that 
bosh types of particles are present locally, but in different concentrations. 
So one can neither interpret the limit t / in  terms of differences of densities 
as in d < 4 or as a scalar as in d > 4. Instead, t /has a density which satisfies 
the system of equations given below. 

T h e o r e m  5. For d = 4 ,  

t _ l { ,  w.., t~ as t -*  oo (17) 

where t /has  density u(x, s) = (uA(x, s), uB(x, s)) given by 

Ou A 1 
as = 2 JUA -- FuA uB 

0uB 1 
0-~-=~ AUB --FUAU B 

(18) 

F >  0, with 

U A ( ' , 0 ) = ~  , U B ( ' , 0 ) = ~ +  (19) 

In (19), ~b and 05 + denote the negative and positive parts of white 
noise. Since ~b has infinite variation everywhere, one really needs to be 
more precise about what one means by these quantities. With some effort, 
one can define them as limits in terms of t/s as s $ 0. The blowup that occurs 
here due to rescaling as s { 0  is consistent with the increasingly rapid 
annihilation of particles as given by (18) when UA and uB both increase 
proportionally. This is explained in ref. 4. 
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4. S P A T I A L  S T R U C T U R E - - M I C R O S C O P I C  B E H A V I O R  

We wish to investigate the asymptotic behavior of ~ more carefully. 
Theorems 3-5 give its behavior when space is rescaled by xf)-, which is the 
proper scaling to follow the evolution of the process in terms of the local 
densities of its particles. One may instead wish to view the process on the 
microscopic level, so that the evolution of 4 maintains its random charac- 
ter. The natural scaling to use in this case is t ~, where fl -- 1/4 for d ~< 4 and 
fl= 1/d for d~>4. Referring to Theorem 1, we see that this is what one 
needs to compensate for the decay in densities of the A and B particles. We 
therefore set 

( (G;x , t )=~( t~G+x; t ) ,  E c ~  d (20) 

One can consider, for instance, cubes G which are centered at 0. Then 
t~G + x provides a "window" around x which is large enough to view the 
local behavior of 4. Note that since f l<  1/2 in all cases, the densities 
calculated in Theorems 3-5 are all asymptotically constant on this scale. 

We make a number of basic observations which will make the 
behavior of ~ clearer. We note that for the system of particles A + B ~ inert 
and large t: 

1. Not  much annihilation of particles occurs over It, t(1 + 6 ) ]  for 
0 < 6 ~ 1. This is not surprising, since, according to Theorem 1 and 
Theorems 3 5, no sudden jumps occur in p or the distribution of 4. 

2. Consequently different particles move (more or less) independently 
over this time period. 

3. This motion produces a random field at time t(1 + 6 )  which is 
locally (more or less) homogeneous and Poisson in the two types 
of particles when conditioned on the configuration at time t. So 
the process is locally a convex combination of Poisson random 
fields. 

4. On account of Theorems 3-5, the following must be true: 

a. For  d < 4 ,  the Poisson random fields have only one type of 
particle locally. 
b. For  d >  4, both types are always present with equal densities 
depending only on t. 
c. For  d--4 ,  both types are present locally, but with varying 
densities. 

To phrase the conclusions in (3) and (4) more precisely, we observe 
that the limiting random measure ~/in Theorems 3-5 always has a random 
density U(X,S)=(UA(X,S),UB(X,S)), with x ~ R  d, s > 0 .  Since u is 
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homogeneous in space and scales in time, we restrict ourselves to x = 0, 
s = 1, and denote by 

F(a, b)=P[uA(O , 1 ) ~ a ,  uB(0, 1 ) ~ b ]  (21) 

the corresponding distribution function. Note that in d <  4, all of the mass 
is located at a = 0 or b = 0, and in d >  4, everything is at one point. Also, 
let ~ ,b  denote the homogeneous Poisson random field with means a and 
b for the A- and B-type particles, and set 

~ g = I ~ , ,  b dF(a, b) (22) 

that is, ~F is the convex combination of these fields weighted according 
to F. 

The conclusion in observations 3 and 4 can be stated as follows. 

T h e o r e m  6. For  all d, 

~(x, t) w @ as t--* oe (23) 

It is clear by translation invariance that the convergence is uniform in x. 
The above statement can of course also be phrased in terms of convergence 
over a range of times instead of just over space (more in analogy with the 
phrasing in Theorems3-5) .  Letting time range over [t , t+t2~],  for 
instance, the limit is then a system of independent random walks with 
invariant distribution @. 

Of substantial interest is the question of what one can say about the 
behavior of ~ over space scales that are intermediate to x~-, which was 
employed in the macroscopic scaling, and t ~, which has been employed 
here. One can, for instance, inquire as to how quickly the density of a par- 
ticle type, which is in the local minority in some intermediate-sized region, 
decreases in d < 4. In analogy with Theorem 2, one would expect that once 
one type of particle becomes dominant locally, then it drives down the 
local density of the other type "exponentially" fast. (Since the density of the 
dominant type is also tending to 0 at rate t d/4, the time scale needs to be 
attenuated by a corresponding factor.) We need to balance against this the 
influx of particles from the boundaries of other regions where the 
dominance relationship is reversed. For regions which are not too close to 
such boundaries, the rate of such influx should also be "exponentially" 
small. In d =  4, on the other hand, the density of the locally dominant type 
is just of magnitude t-1. So annihilation of the minority type only occurs 
at this rate; this is slow enough so that particles from within distances of 
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magnitude ~ (including where the other type is dominant) meanwhile 
have sufficient time to diffuse in. In d >  4, neither particle type achieves 
local dominance. Although these questions have not yet been treated 
rigorously, the basic geometric picture is fairly clear. 

Given that one has enough confidence to accept (in d < 4 )  such a 
nearly complete local absence of minority-type particles, one can apply this 
reasoning to related questions, for instance, the distance between clusters of 
different particle types. As explained by Redner and Leyvraz (1~ one has 
reason to expect an intercluster distance of magnitude t 3/8 in d =  1. This 
conclusion also results from our setting, the idea being as follows. After 
scaling space by t 1/2 at time t and the concentration by t 1/4, the behavior 
of qA and r/B is given by N1 * ~ (Theorem 3). The crossover from type A 
to type B particles occurs where the value of the curve is 0. There, the curve 
will have nonzero slope. Measuring from this point, the integral of N1 * 
over an interval of length x ~ 1 is of order x 2. Returning to the original 
scale, one should see on the order of tl/4X 2 particles on the corresponding 
interval of length t~/2x. The intercluster distance should be on the scale 
obtained by setting gl/4X2= 1; then the expected number of particles in such 
an interval will be of order 1. This substitution x = t 1/8 gives t~/2x = t 3/8 as 
the order of the anticipated length of the intercluster distance in d--  1. One 
can also look at related questions in d =  2, 3, although there the geometry 
of the clusters of particle types will of course be more complicated, and one 
has to put more thought into how to measure the intercluster distance. As 
before, one can analyze the local behavior of N~ * 4. 
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